Abstract

Abstract. More detailed observational capabilities in the microwave (MW) range and advancements in the details of microphysical schemes for ice and snow demand increasing complexity to be included in scattering databases. The majority of existing databases rely on the discrete dipole approximation (DDA) whose high computational costs limit either the variety of particle types or the range of parameters included, such as frequency, temperature, and particle size. The snowScatt tool is innovative in that it provides consistent microphysical and scattering properties of an ensemble of 50 000 snowflake aggregates generated with different physical particle models. Many diverse snowflake types, including rimed particles and aggregates of different monomer composition, are accounted for. The scattering formulation adopted by snowScatt is based on the self-similar Rayleigh–Gans approximation (SSRGA), which is capable of modeling the scattering properties of large ensembles of particles. Previous comparisons of SSRGA and DDA are extended in this study by including unrimed and rimed aggregates up to centimeter sizes and frequencies up to the sub-millimeter spectrum. The results generally reveal the wide applicability of the SSRGA method for active and passive MW applications. Unlike DDA databases, the set of SSRGA parameters can be used to infer scattering properties at any frequency and refractive index; snowScatt also provides tools to derive the SSRGA parameters for new sets of particle structures, which can be easily included in the library. The flexibility of the snowScatt tool with respect to applications that require continuously changing definitions of snow properties is demonstrated in a forward simulation example based on the output of the predicted particle properties (P3) scheme. The snowScatt tool provides the same level of flexibility as commonly used T-matrix solutions, while the computed scattering properties reach the level of accuracy of detailed discrete dipole approximation calculations.

Highlights

  • Accurate characterization of scattering and absorption properties of hydrometeors in the microwave (MW) range is an essential prerequisite for retrievals of cloud and precipitation properties (Maahn et al, 2020)

  • As mentioned in Sect. 2.2.1, the assumptions of the self-similar Rayleigh– Gans approximation (SSRGA) are expected to become increasingly invalid at higher frequencies and for more dense particles

  • Hogan et al (2017) demonstrated that the scattering properties obtained from SSRGA match discrete dipole approximation (DDA) calculations within the uncertainties given by the unknown real shape of the snowflake and up to a frequency of 183 GHz

Read more

Summary

Introduction

Accurate characterization of scattering and absorption properties of hydrometeors in the microwave (MW) range is an essential prerequisite for retrievals of cloud and precipitation properties (Maahn et al, 2020). As pointed out by Kneifel et al (2020) and Tyynelä and von Lerber (2019), the problem of realistically characterizing the scattering properties of ice crystals, snowflakes, and rimed particles is twofold: first, the physical properties, such as the size, mass, density, shape, internal structure, and composition of ice and liquid, have to be characterized. This can either be done empirically or by using a physical hydrometeor model, which generates the particles by directly simulating a certain growth process such as aggregation.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call