Abstract
Snowdrift is one of the manymanifestations of two-phase flow, in which theinteraction between suspended particles and theambient fluid brings about some interesting features.Specifically, the drag required to keep particles insuspension against the downward gravitational pullrequires expenditure of turbulent kinetic energy(TKE). Other effects include the increased density of theair-snow mixture and the stable thermal stratificationcaused by the snowdrift sublimation-induced cooling.An atmospheric surface-layer model that includes snowdriftsuspension is described that includes the effects ofupward diffusion, gravitational settling andsublimation of snow particles in 48 size classes, theeffects of snowdrift sublimation on the heat andmoisture budget of the surface layer and the dampingof turbulence in the presence of suspended particles. Thewell-known E-e closure model is applied toevaluate the eddy exchange coefficient, with a newterm representing buoyancy reduction induced by thestably stratified suspended particle profile includedin the prognostic equation for TKE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.