Abstract
Projections of future climate suggest increases in global temperatures that are especially pronounced in winter in cold‐temperate regions. Thermal insulation provided by snow cover to litter, soil, and overwintering plants will likely be affected by changing winter temperatures and might influence future species composition and ranges. We investigated effects of changing snow cover on seed germination and sapling survival of several cold‐temperate tree species using a snow manipulation approach. Post‐winter seed germination increased or decreased with increasing snow cover, depending on species; decreased seed germination was found in species that characteristically disperse seed in summer or fall months prior to snowfall. Post‐winter sapling survival increased with increasing snow cover for all species, though some species benefitted more from increased snow cover than others. Sapling mortality was associated with root exposure, suggesting the possibility that soil frost heaving could be an important mechanism for observed effects. Our results suggest that altered snow regimes may cause re‐assembly of current species habitat relationships and may drive changes in species’ biogeographic range. However, local snow regimes also vary with associated vegetation cover and topography, suggesting that species distribution patterns may be strongly influenced by spatial heterogeneity in snow regimes and complicating future projections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.