Abstract

Summary In the present paper multi-temporal Lidar (Light detection and ranging) data and Landsat images are used to assess the spatial variability of snow at the end of the accumulation season (April–May) in a glacierized catchment (167 km 2 ) in Tyrol, Austria. Snow cover characteristics in the Tyrolean Alps have been analysed using regular snow measurements and snow course data. Results are used for the conversion of basin-wide Lidar snow depth into snow water equivalent (SWE). When considering different possible error sources, uncertainties of the mean basin-wide SWE obtained from Lidar are between 12% and 16%. Available distributions of SWE and snow covered area (SCA) in the catchment are used for the calibration and validation of the fully distributed hydrological model SES. The study focuses especially on the simulation of snow accumulation and the corresponding variability of snow. Observed accumulation patterns are related to the topography (elevation, slope and curvature), and according parameter settings of the hydrological model are derived by means of Monte Carlo simulations. The majority of the model runs simulates SCA for various datasets with an accuracy of 85–95%. The paper demonstrates that using SWE data is superior to SCA for constraining model parameter ranges. Results at the watershed scale are in agreement with respect to the total water volume of the snow cover with deviations lower than 5% between SWE from Lidar or from the hydrological model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.