Abstract

AbstractSnow bedforms, like sand bedforms, consist of various shapes that form under the action of wind on mobile particles. Throughout a year, they can cover up to 11% of the Earth surface, concentrated toward the poles. These forms impact the local surface energy balance and the distribution of precipitation. Only a few studies have concentrated on their genesis. Their size ranges from 2 cm (ripple marks) to 2.5 m tall (whaleback dunes). We counted a total of seven forms that are widely recognized. Among them sastrugi, an erosional shape, is the most widespread. From laser scans, we compared scaling of snow versus sand barchan morphology. We found that both have proportionally the same footprint, but snow barchans are flatter. The key difference is that snow can sinter, immobilizing the bedform and creating an erodible material. Using a model, we investigated the effect of sintering on snow dune dynamics. We found that sintering limits their size because it progressively hardens the snow and requires an ever‐increasing wind speed to maintain snow transport. From the literature and results from this model, we have reclassified snow bedforms based on two parameters: wind speed and snow surface conditions. The new data show that snow dune behavior mirrors that of sand dunes, with merging, calving, and collision. However, isolated snow barchans are rare, with most of the snow surfaces encountered in the field consisting of several superimposed bedforms formed sequentially during multiple weather events. Spatially variable snow properties and geometry can explain qualitatively these widespread compound snow surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.