Abstract

Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by ‘blunt’ and ‘pointed’ snouts respectively, often with specification of an ‘intermediate’ sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is ‘unknown’ can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation when repeating the analysis with phylogenetic control on the geometric profiles.

Highlights

  • Members of Ruminantia are even-toed ungulate mammals defined uniquely by possession of a two-step digestion system involving the fermentation chamber in the foregut of the stomach

  • The majority of sampled specimens were housed in the zoology collections at The Natural History Museum (NHM), London, UK, with additional specimens sampled from the Royal Veterinary College (RVC), London, UK

  • Grazers are strongly constrained along the principal component (PC)-3 axis, whereas browsers exhibit about twice the range variation in both the positive and negative values

Read more

Summary

Introduction

Members of Ruminantia are even-toed ungulate mammals defined uniquely by possession of a two-step digestion system involving the fermentation chamber in the foregut of the stomach. Ruminant feeding styles are reflected in their craniodental and gastrointestinal morphophysiological diversity, and have been conventionally categorised into ‘browsers’ and ‘grazers’, with an ‘intermediate’ sub-category [2,3,4,5]. Browsers are considered obligate non-grazers, but not vice-versa [2]. Some authors further include variants of frugivores, high-level browsers, and fresh grass grazers as independent categories in an attempt to encompass a larger range of feeding styles [3,4,5]. Variations in feeding style may occur on different spatial and temporal levels, corresponding to environmental stresses (e.g., drought [6]), and plausibly a hierarchical grazing succession related to species’ migration patterns, geomorphology, resource partitioning or forage quality [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call