Abstract

Small nucleolar RNAs (snoRNAs)are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call