Abstract

BackgroundDefining clinical phenotypes from electronic health record (EHR)–derived data proves crucial for clinical decision support, population health endeavors, and translational research. EHR diagnoses now commonly draw from a finely grained clinical terminology—either native SNOMED CT or a vendor-supplied terminology mapped to SNOMED CT concepts as the standard for EHR interoperability. Accordingly, electronic clinical quality measures (eCQMs) increasingly define clinical phenotypes with SNOMED CT value sets. The work of creating and maintaining list-based value sets proves daunting, as does insuring that their contents accurately represent the clinically intended condition.ObjectiveThe goal of the research was to compare an intensional (concept hierarchy-based) versus extensional (list-based) value set approach to defining clinical phenotypes using SNOMED CT–encoded data from EHRs by evaluating value set conciseness, time to create, and completeness.MethodsStarting from published Centers for Medicare and Medicaid Services (CMS) high-priority eCQMs, we selected 10 clinical conditions referenced by those eCQMs. For each, the published SNOMED CT list-based (extensional) value set was downloaded from the Value Set Authority Center (VSAC). Ten corresponding SNOMED CT hierarchy-based intensional value sets for the same conditions were identified within our EHR. From each hierarchy-based intensional value set, an exactly equivalent full extensional value set was derived enumerating all included descendant SNOMED CT concepts. Comparisons were then made between (1) VSAC-downloaded list-based (extensional) value sets, (2) corresponding hierarchy-based intensional value sets for the same conditions, and (3) derived list-based (extensional) value sets exactly equivalent to the hierarchy-based intensional value sets. Value set conciseness was assessed by the number of SNOMED CT concepts needed for definition. Time to construct the value sets for local use was measured. Value set completeness was assessed by comparing contents of the downloaded extensional versus intensional value sets. Two measures of content completeness were made: for individual SNOMED CT concepts and for the mapped diagnosis clinical terms available for selection within the EHR by clinicians.ResultsThe 10 hierarchy-based intensional value sets proved far simpler and faster to construct than exactly equivalent derived extensional value set lists, requiring a median 3 versus 78 concepts to define and 5 versus 37 minutes to build. The hierarchy-based intensional value sets also proved more complete: in comparison, the 10 downloaded 2018 extensional value sets contained a median of just 35% of the intensional value sets’ SNOMED CT concepts and 65% of mapped EHR clinical terms.ConclusionsIn the EHR era, defining conditions preferentially should employ SNOMED CT concept hierarchy-based (intensional) value sets rather than extensional lists. By doing so, clinical guideline and eCQM authors can more readily engage specialists in vetting condition subtypes to include and exclude, and streamline broad EHR implementation of condition-specific decision support promoting guideline adherence for patient benefit.

Highlights

  • OverviewGiven widespread adoption of electronic health records (EHRs) certified to follow terminology standards, why does achieving interoperable clinical phenotype definitions remain challenging? Practical approaches to analytic interoperability among EHR-originated datasets would provide value both for population health analytics and clinical research [1,2,3]

  • The hierarchy-based intensional value sets proved more complete: in comparison, the 10 downloaded 2018 extensional value sets contained a median of just 35% of the intensional value sets’ SNOMED CT concepts and 65% of mapped EHR clinical terms

  • Clinical quality measures derived from EHR data increasingly define clinical phenotypes with SNOMED CT concept value sets, analogous to the International Classification of Diseases (ICD) code value sets traditionally defined for claims data

Read more

Summary

Introduction

OverviewGiven widespread adoption of electronic health records (EHRs) certified to follow terminology standards, why does achieving interoperable clinical phenotype definitions remain challenging? Practical approaches to analytic interoperability among EHR-originated datasets would provide value both for population health analytics and clinical research [1,2,3]. Clinical quality measures derived from EHR data increasingly define clinical phenotypes with SNOMED CT concept value sets, analogous to the International Classification of Diseases (ICD) code value sets traditionally defined for claims data. SNOMED CT, being a polyhierarchical ontology, affords the powerful option of employing rule-based or “intensional” value sets leveraging the relationships within the ontology. Such intensional value sets can more concisely identify included and excluded subtypes of a clinical condition by referring to SNOMED CT’s hierarchical “is a” supertype-subtype (parent-child) relationships. The work of creating and maintaining list-based value sets proves daunting, as does insuring that their contents accurately represent the clinically intended condition

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call