Abstract

The experimental and calculated results of the investigation of electromagnetic field distribution including its polarization characteristics in the vicinity of the nanostructures are presented. The experimental investigation was realized by aperture type scanning near field optical microscopes (SNOMs) which operated in collection mode. Normal resolution which allows us to image down to 0.3 nm height surface steps was demonstrated for the shear force probe to surface gap control system of the SNOM. Theoretical computation of the electromagnetic field distribution was realized by finite-difference time-domain (FDTD) method. The experimental three-dimensional maps of intensity and polarization distribution as a result of light diffraction at nanoaperture in the metal screen, dielectric and metallized nanocylinders were obtained. The qualitative difference between the orthogonal polarized component distributions near nanoaperture was experimentally shown. The electromagnetic field concentration in the proximity of the dielectric nanocylinders was observed. This observation gives a good fit with the results of FDTD computations. A spiral type electromagnetic field distribution pattern was experimentally observed in the proximity of metallized nanocylinders, which is unexpected from both experimental and theoretical points of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.