Abstract

The stannic oxide (SnO2) anode expands in volume during cycling causing a decrease in reversible capacity. In this work, we generated a spherical SnO2/Sn heterojunction with core-shell structure composites encapsulated by graphene (SnO2/Sn/G) in situ using a simple one-step hydrothermal and subsequent annealing process. SnO2/Sn heterojunction nanospheres dispersed in a porous graphene framework accelerate the diffusion kinetics of electrons and ions. In addition, the structure plays a key role in mitigating large volume changes and nanostructure agglomeration. As a result, SnO2/Sn/G exhibits excellent performance as an anode material for lithium-ion batteries (LIBs), maintaining a reversible specific capacity of 720.6 mA h g-1 even after 600 cycles at a current density of 0.5 A g-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call