Abstract

Hierarchical flower-like SnO2 nanomicrostructure has been synthesized via a solvent-induced and surfactant assisted self-assembly technique at ambient temperature followed by a suitable thermal treatment. A possible growth mechanism governing the formation of such a nanomicrostructure is discussed. The applications in gas sensors for detecting CO and H2 reveal that the obtained SnO2 material exhibits a remarkable sensitivity and extremely low detecting limit (5 ppm), as well as good reproducibility and short response/recovery times, which benefit a lot from its unique flower-like nanomicrostructure consisting of three-dimensional interconnected SnO2 nanoparticles and nanopores. In order to use the present SnO2 nanomicrostructure in lithium-ion batteries, carbon coatings are introduced to the surface of them by pyrolysis of glucose under hydrothermal conditions. Both SnO2−C and Sn−C nanocomposites are obtained by taking thermal treatment of the precursors at different temperatures. The conversion processes...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.