Abstract

This paper reports, for the first time, the fabrication and characterization of highly sensitive and selective electrochemical sensor for the efficient detection of cadmium ion using SnO2 quantum dots (QDs). The SnO2 QDs were prepared by simple and facile low-temperature hydrothermal process and characterized by several techniques. The detailed characterizations revealed that the QDs are pure SnO2, prepared in large quantity with the average size of 2–4nm and possessing well-crystallinity with tetragonal crystal structure. Further, the prepared SnO2 QDs were used as potential scaffold to fabricate highly sensitive, selective and reproducible electrochemical sensor for the efficient detection of cadmium ions. The fabricated sensor exhibited a high sensitivity of ∼77.5×102 nA ppm−1 cm−2, a low detection limit of ∼0.5ppm and response time of <2s. The presented work demonstrates that the SnO2 QDs are effective electron mediators to fabricated efficient electrochemical sensor for the easy, cost effective and accurate on-site detection of cadmium ions in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.