Abstract

SnO2 nanoparticles (SNPs) entrapped in a graphene framework are synthesized for use as an anode material in Li ion batteries. A framework is prepared by covalently linking SNPs-anchored graphene oxide layers with diboronic acids. The framework provides the SNPs with more effective buffering than thermally reduced graphene oxide. SNPs in a graphene framework maintain the initial particle size and morphology after repeated charge-discharge cycles, with no inter-particle aggregation. The volume increase of the composite, accompanied by Li+ insertion into SNPs, is also significantly suppressed. The isolation of an individual nanoparticle and the firmness of a framework, which are ascribed to densely cross-linked graphene layers, results in better cyclability and rate performance by comparison with thermally reduced SNPs-anchored graphene oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.