Abstract
Through a two-step hydrothermal method, we synthesized a metal-oxide heterostructure composed of SnO2 nanocrystals (NCs) with a diameter of ~ 6 nm and Fe2O3 nanorods (NRs) with a length of ~ 200 nm and a width of ~ 9 nm. The SnO2 NCs are well dispersed on the surface of Fe2O3 NRs. The effect of Fe2O3 NRs loading amount on the electrochemical performance of nanocomposite is investigated. The nanocomposites with less loading amount of Fe2O3 exhibit better electrochemical performance. The enhanced performance is attributed to the synergistic effect of two components. On one hand, the conversion reaction of SnO2 is facilitated due to the presence of Fe2O3 NRs, resulting in a high capacity. On the other hand, Fe2O3 NRs improve the stability of electrode, promoting the cycling performance. The high loading amount of Fe2O3 NRs renders the aggregation of electrode materials, resulting in poor electrochemical performance. Our results demonstrate that adjusting the loading amount of metal oxides in hybrid structures is an effective strategy to enhance lithium storage capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.