Abstract
A facile synthesis of SnO2/corncob-derived activated carbon (CAC) composite was proposed, and the CAC used here has high specific surface area (over 3000 m2/g) and ample oxygen-containing functional groups. The microstructures and morphology as well as electrochemical performance of the SnO2/CAC composites were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and relevant electrochemical characterization. The results show that the mass ratios of SnO2 to CAC have a significant effect on the structures and properties of the composites. The sample with 34% SnO2 delivered a capacity of 879.8 mAh/g in the first reversible cycle and maintained at 634.0 mAh/g (72.1% retention of the initial reversible capacity) after 100 cycles at a current density of 200 mA/g. After 60 cycles at different specific currents from 200 to 2000 mA/g, the reversible specific capacity was still maintained at 632.8 mAh/g at a current density of 200 mA/g. These results indicate that SnO2/CAC can be a desirable alternative anode material for lithium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.