Abstract

SnO2 semiconductor is a new-typed promising photocatalyst, but wide application of SnO2-based photocatalytic technology has been restricted by low visible light utilization efficiency and rapid recombination of photogenerated electrons–holes. To overcome these drawbacks, we prepared B/Fe codoped SnO2–ZnO thin films on glass substrates through a simple sol–gel method. The photocatalytic activities of the films were evaluated by degradation of organic pollutants including acid naphthol red (ANR) and formaldehyde. UV–Vis absorption spectroscopy and photoluminescence (PL) spectra results revealed that the B/Fe codoped SnO2–ZnO film not only enhanced optical absorption properties but also improved lifetime of the charge carriers. X-ray diffraction (XRD) results indicated that the nanocrystalline SnO2 was a single crystal type of rutile. Field emission scanning electron microscopy (FE-SEM) results showed that the B/Fe codoped SnO2–ZnO film without cracks was composed of smaller nanoparticles or aggregates compared to pure SnO2 film. Brunauer–Emmett–Teller (BET) surface area results showed that the specific surface area of the B/Fe codoped SnO2–ZnO was 85.2 m2 g−1, while that of the pure SnO2 was 20.7 m2 g−1. Experimental results exhibited that the B/Fe codoped SnO2–ZnO film had the best photocatalytic activity compared to a pure SnO2 or singly-modified SnO2 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.