Abstract

Spiking neural networks (SNNs) have emerged as a novel approach for reducing computational costs by mimicking the biologically plausible operations of neurons and synapses. In this article, large‐scale analog SNNs are investigated and optimized at the hardware‐level by using SNNSim, the novel simulator for SNNs that employ analog synaptic devices and integrate‐and‐fire (I&F) neuron circuits. SNNSim is a reconfigurable simulator that accurately and very quickly models the behavior of the user‐defined device characteristics and returns key metrics such as area, accuracy, latency, and power consumption as output. Notably, SNNSim exhibits exceptional efficiency, as it can process the entire 10 000 Modified National Institute of Standards and Technology (MNIST) test dataset in a few seconds, whereas SPICE simulations require hours to simulate a single MNIST test data. Using SNNSim, the conversion of artificial neural networks (ANNs) to SNNs is simulated and the performance of the large‐scale analog SNNs is optimized. The results enable the design of accurate, high‐speed, and low‐power operation of large‐scale SNNs. SNNSim code is now available at https://github.com/SMDLGITHUB/SNNSim.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call