Abstract

BackgroundRecent studies indicate that the G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO) and S-nitrosothiols (RSNOs). To gain a broader view into the way that receptor-dependent G protein activation – an early step in signal transduction – might be affected by RSNOs, we have studied several receptors coupling to the Gi family of G proteins in their native cellular environment using the powerful functional approach of [35S]GTPγS autoradiography with brain cryostat sections in combination with classical G protein activation assays.ResultsWe demonstrate that RSNOs, like S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO), can modulate GPCR signaling via reversible, thiol-sensitive mechanisms probably involving S-nitrosylation. RSNOs are capable of very targeted regulation, as they potentiate the signaling of some receptors (exemplified by the M2/M4 muscarinic cholinergic receptors), inhibit others (P2Y12 purinergic, LPA1lysophosphatidic acid, and cannabinoid CB1 receptors), but may only marginally affect signaling of others, such as adenosine A1, μ-opioid, and opiate related receptors. Amplification of M2/M4 muscarinic responses is explained by an accelerated rate of guanine nucleotide exchange, as well as an increased number of high-affinity [35S]GTPγS binding sites available for the agonist-activated receptor. GSNO amplified human M4 receptor signaling also under heterologous expression in CHO cells, but the effect diminished with increasing constitutive receptor activity. RSNOs markedly inhibited P2Y12 receptor signaling in native tissues (rat brain and human platelets), but failed to affect human P2Y12 receptor signaling under heterologous expression in CHO cells, indicating that the native cellular signaling partners, rather than the P2Y12 receptor protein, act as a molecular target for this action.ConclusionThese in vitro studies show for the first time in a broader general context that RSNOs are capable of modulating GPCR signaling in a reversible and highly receptor-specific manner. Given that the enzymatic machinery responsible for endogenous NO production is located in close proximity with the GPCR signaling complex, especially with that for several receptors whose signaling is shown here to be modulated by exogenous RSNOs, our data suggest that GPCR signaling in vivo is likely to be subject to substantial, and highly receptor-specific modulation by NO-derived RSNOs.

Highlights

  • Recent studies indicate that the G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO) and S-nitrosothiols (RSNOs)

  • Exogenous RSNOs modulate GPCR signaling via mechanisms likely involving S-nitrosylation We used the functional approach of [35S]GTPγS autoradiography, as this technique allows selective detection of receptor-stimulated Gi protein activity simultaneously in multiple brain structures with minimal disturbance of the GPCR microenvironment [36]

  • We focused the initial experiments on three Gi-linked receptors, namely M2/M4 AChRs, the P2Y12 purinoceptor, and the LPA1 receptor, as G protein activity upon stimulation of these receptors has been previously characterized using the autoradiography approach and each receptor shows a unique anatomical distribution pattern in the developing rat brain [36,4143]

Read more

Summary

Introduction

Recent studies indicate that the G protein-coupled receptor (GPCR) signaling machinery can serve as a direct target of reactive oxygen species, including nitric oxide (NO) and S-nitrosothiols (RSNOs). Individual components of the GPCR signaling machinery are implicated as potential targets of reactive oxygen species (ROS), including NO [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35], a broader view on how NO, and RSNOs in particular, might modulate GPCR signaling, has not been established

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call