Abstract
We report that stationary phase Mycobacterium smegmatis is more sensitive than exponential phase cells to the nitric oxide donor S-Nitrosoglutathione (GSNO). This finding was used to select for both spontaneous and transposon mutants of M. smegmatis with increased resistance to GSNO in stationary phase. Some of these mutants were also defective in stationary phase survival, demonstrating a link between sensitivity to GSNO and stationary phase survival. Transduction of the disrupted region from seven selected mutants indicated that the transposon insertion was linked to the GSNO-resistance and stationary phase survival phenotypes. For five mutants, the disrupted genes were identified. Three were homologous to genes with possible roles in nutrient scavenging, including: (i) a putative amino acid efflux pump, (ii) a putative thioesterase and (iii) an enoyl-CoA-hydratase. One mutant was disrupted in the atpD gene, encoding the β chain of F1 F0 ATP synthase. We independently isolated a stationary phase survival mutant disrupted in the atpA gene (encoding the α chain) of the F1 F0 ATP synthase of the same operon, suggesting an important role for efficient ATP synthesis in stationary phase survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.