Abstract
Image forgery detection has aroused widespread research interest in both academia and industry because of its potential security threats. Existing forgery detection methods achieve excellent tampered regions localization performance when forged images have not undergone post-processing, which can be detected by observing changes in the statistical features of images. However, forged images may be carefully post-processed to conceal forgery boundaries in a particular scenario. It becomes tough challenging to these methods. In this paper, we perform an analogous analysis between image forgery detection and blind signal separation, and formulate the post-processed image forgery detection problem into a signal noise separation problem. We also propose a signal noise separation-based (SNIS) network to solve the problem of detecting post-processed image forgery. Specifically, we first adopt the signal noise separation module to separate tampered region from the complex background region with post-processing noise, which weakens or even eliminates the negative impact of post-processing on forgery detection. Then, the multi-scale feature learning module uses a parallel atrous convolution architecture to learn high-level global features from multiple perspectives. Besides, a feature fusion module is utilized to enhance the discriminability of tampered regions and real regions by strengthening the boundary information. Finally, the prediction module is designed to predict the tampered region and classify the type of tampering operation. Extensive experiments show that the proposed SNIS is not only effective for forgery detection on forged images without post-processing, but also promising in robustness against multiple post-processing attacks. Furthermore, SNIS is robust in detecting forged images from unknown sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.