Abstract

Mammography is the gold standard for early breast cancer detection, but shows important limitations. Blood-based approaches on basis of cell-free DNA (cfDNA) provide minimally invasive screening tools to characterize epigenetic alterations of tumor suppressor genes and could serve as a liquid biopsy, complementing mammography. Potential biomarkers were identified from The Cancer Genome Atlas (TCGA), using HumanMethylation450-BeadChip data. Promoter methylation status was evaluated quantitatively by pyrosequencing in a serum test cohort (n = 103), a serum validation cohort (n = 368) and a plasma cohort (n = 125). SPAG6, NKX2-6 and PER1 were identified as novel biomarker candidates. ITIH5 was included on basis of our previous work. In the serum test cohort, a panel of SPAG6 and ITIH5 showed 63% sensitivity for DCIS and 51% sensitivity for early invasive tumor (pT1, pN0) detection at 80% specificity. The serum validation cohort revealed 50% sensitivity for DCIS detection on basis of NKX2-6 and ITIH5. Furthermore, an inverse correlation between methylation frequency and cfDNA concentration was uncovered. Therefore, markers were tested in a plasma cohort, achieving a 64% sensitivity for breast cancer detection using SPAG6, PER1 and ITIH5. Although liquid biopsy remains challenging, a combination of SPAG6, NKX2-6, ITIH5 and PER1 (SNiPER) provides a promising tool for blood-based breast cancer detection.

Highlights

  • Mammography is the gold standard for early breast cancer detection, but shows important limitations

  • Based on The Cancer Genome Atlas (TCGA) analysis and the defined criteria, we identified ten potential candidate genes of which SPAG6, PER1 and NKX2-6 proved suitable for early breast cancer detection after an initial validation in breast cancer cell lines and a small cryoconserved tissue cohort (Supplementary Figure 1)

  • ITIH5 was included on basis of previous promising data by our group [29]

Read more

Summary

Introduction

Mammography is the gold standard for early breast cancer detection, but shows important limitations. The current gold standard for early breast cancer detection is mammography [4]. Mammography is able to detect small invasive breast tumors before they become palpable and is the most effective tool for detection of micro calcifications and DCIS [5]. Mammography causes personal discomfort, resulting in insufficient compliance rates [6, 7]. It has poor accuracy in women with dense breast tissue, causing a decrease in sensitivity from 70–91% to 30–48% [5, 6, 8,9,10], and is less sensitive for the detection of small or diffuse tumors [11]. We are in need of a minimally invasive tool to increase compliance and improve non-invasive screening

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call