Abstract

Additive manufacturing, or 3D printing, has revolutionized the way we create objects. However, its layer-by-layer process may lead to an increased incidence of local defects compared to traditional casting-based methods. Factors such as light intensity, depth of light penetration, component inhomogeneity, and fluctuations in nozzle temperature all contribute to defect formations. These defective regions can become sources of toxic component leakage, but pinpointing their locations in 3D printed materials remains a challenge. Traditional toxicological assessments rely on the extraction and subsequent exposure of living organisms to these harmful agents, thus only offering a passive detection approach. Therefore, the development of an active system to both identify and locate sources of toxicity is essential in the realm of 3D printing technologies. Herein, we introduce the use of the nematode model organism, Caenorhabditis elegans (C. elegans), for toxicity evaluation. C. elegans exhibits distinctive 'sensing' and 'locomotion' capabilities that enable it to actively navigate toward safe zones while steering clear of hazardous areas. This active behavior sets C. elegans apart from other aquatic and animal models, making it an exceptional choice for immediate and precise identification and localization of toxicity sources in 3D printed materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call