Abstract

BackgroundLong noncoding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) has been revealed to be involved in the tumorigenesis of neuroblastoma. However, the role of SNHG16 in regulating cisplatin sensitivity in neuroblastoma remains largely unknown.MethodsThe expression of SNHG16, microRNA (miR)-338-3p and polo-like kinase 4 (PLK4) mRNA was measured using quantitative real-time polymerase chain reaction. The protein levels of PLK4, multidrug resistance protein 1 (MRP1), multidrug-resistance gene 1-type p-glycoprotein (P-gp) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins were detected by Western blot. The half maximal inhibitory concentration (IC50) value, cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 assays or Transwell assay. Apoptotic cells were measured by Flow cytometry. The interaction between miR-338-3p and SNHG16 or PLK4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. In vivo experiments were conducted through the murine xenograft model.ResultsSNHG16 was up-regulated, while miR-338-3p was down-regulated in cisplatin-resistant neuroblastoma tissues and cells. SNHG16 silencing weakened cisplatin resistance, reflected by the reduction of IC50 value, down-regulation of MRP-1 and P-gp protein expression, suppression of proliferation, migration and invasion, as well as enhancement of apoptosis in SNHG16 deletion cisplatin-resistant neuroblastoma cells. Besides that, SNHG16 could regulate PLK4 expression by sponging miR-338-3p and SNHG16/miR-338-3p/PLK4 axis could affect the activation of PI3K/AKT pathway in cisplatin-resistant neuroblastoma cells. MiR-338-3p inhibition attenuated SNHG16 deletion-mediated impairment on cisplatin resistance and PLK4 overexpression reversed the decrease of cisplatin-resistance induced by miR-338-3p re-expression. Furthermore, SNHG16 knockdown contributed to the anti-tumor effect of cisplatin in neuroblastoma in vivo.ConclusionSNHG16 contributed to the tumorigenesis and cisplatin resistance in neuroblastoma possibly through miR-338-3p/PLK4 pathway, indicating a novel insight for overcoming chemoresistance in neuroblastoma patients.

Highlights

  • Long noncoding RNA small nucleolar RNA host gene 16 has been revealed to be involved in the tumorigenesis of neuroblastoma

  • LncRNA small nucleolar RNA host gene 16 (SNHG16) is a cancer-related Long noncoding RNAs (lncRNAs), which was found to be elevated in diverse cancers, such as breast cancer [10], gastric cancer [11], osteosarcoma [12], and hepatocellular carcinoma [13], and acted as an oncogene to contribute to the drug resistance and development of cancers

  • SNHG16 is up‐regulated and miR‐338‐3p is down‐regulated in cisplatin‐resistant neuroblastoma tissues and cells Previous study has showed that SNHG16 was up-regulated in neuroblastoma, we detected the expression of SNHG16 in neuroblastoma tissues which were divided into cisplatin-sensitive group (Sensitivity, N = 36) and cisplatin-resistant group (Resistance, N = 40). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated SNHG16 was significantly up-regulated in the Resistance group compared to the Sensitivity group (Fig. 1a)

Read more

Summary

Introduction

Long noncoding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) has been revealed to be involved in the tumorigenesis of neuroblastoma. It was revealed that several abnormally expressed lncRNAs can mediate chemoresistance in cancers [9]. All these evidence suggests lncRNAs are potential diagnostic and prognostic targets for malignancies. LncRNA small nucleolar RNA host gene 16 (SNHG16) is a cancer-related lncRNA, which was found to be elevated in diverse cancers, such as breast cancer [10], gastric cancer [11], osteosarcoma [12], and hepatocellular carcinoma [13], and acted as an oncogene to contribute to the drug resistance and development of cancers. The exact mechanisms underlying the chemoresistant role of SNHG16 in neuroblastoma remain largely vague

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call