Abstract

BackgroundThe differentiation of human stromal (mesenchymal) stem cells (hMSCs) is a critical procedure for the development of osteoblast. SNHG14 is a newly discovered lncRNA that has been barely studied. Our preliminary experiments showed that SNHG14 may be dysregulated in the differentiation of hMSCs. In this study, we focused on elucidating the relationships among SNGH14, miR-2861, and osteoblastic differentiation of hMSCs.MethodTo investigate the roles of SNHG14 and miR2861 in hMSCs differentiation, qRT-PCR, luciferase activity, cell transfections, the detections of ALP activity, and Alizarin Red staining were performed.ResultWe found that the expression of SNHG14 was enhanced, while the expression of miR-2861 was suppressed in serum and hMSCs from patients with osteoporosis. SNHG14 could target miR-2861, and shSNHG14 suppressed osteoblast differentiation of hMSC. MiR-2861 suppressed osteoblast differentiation of hMSC. In addition, the effects of SNHG14 on osteoblast differentiation of hMSC were attenuated by miR-2861.ConclusionIn conclusion, our experimental data showed that the induction effects of SNHG14 on osteoblast differentiation of hMSC were attenuated by miR-2861. SNHG14 could induce osteogenic differentiation of hMSC in vitro by targeting miR-2861.

Highlights

  • The differentiation of human stromal stem cells is a critical procedure for the development of osteoblast

  • Result: We found that the expression of SNHG14 was enhanced, while the expression of miR-2861 was suppressed in serum and human stromal (mesenchymal) stem cells (hMSCs) from patients with osteoporosis

  • SNHG14 was targeted by miR-2861 We further investigated the relationship between SNHG14 and miR-2861

Read more

Summary

Introduction

The differentiation of human stromal (mesenchymal) stem cells (hMSCs) is a critical procedure for the development of osteoblast. SNHG14 is a newly discovered lncRNA that has been barely studied. Our preliminary experiments showed that SNHG14 may be dysregulated in the differentiation of hMSCs. In this study, we focused on elucidating the relationships among SNGH14, miR-2861, and osteoblastic differentiation of hMSCs. Mesenchymal stem cells have the capabilities of selfrenewal and multi-lineage differentiation, which are critical factors in the regeneration or repairment of bone tissues [1, 2]. Human bone marrow mesenchymal stem cell (hMSCs) could fully differentiate to many cell types including osteoblasts, chondrocytes, and adipocytes [3, 4]. LncRNA SNHG14 is a newly discovered lncRNA that has been barely demonstrated regarding its biological roles in human diseases. It was reported that SNHG14 promoted microglia activation by regulating miR-

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call