Abstract
By patterning the metasurface of two phase gradients that are both space-orthogonal and polarization-orthogonal, we derived the three-dimensional (3D) Snell-like formula and the Fresnel-like formula of the proposed metasurface. Theoretically, the dual-phase-gradient metasurface resembles biaxial-like birefringence, i.e., decomposing any homogeneously polarized incident beam into two anomalously refracted beams whose polarizations vary as the incident beam. According to the Fresnel-like formula, the relative intensity between the two anomalously refracted beams not only depends on the incidence angle and the polarization ellipticity of the incident beam being similar to the biaxial crystals, but it also depends on the polarization ellipticity orientation even for a given incident polarization, which is an unique property absent in the biaxial crystals. All the theoretical analyses were numerically demonstrated. The 3D Snell-like and Fresnel-like formulas will make the design of functional devices based on the dual-phase-gradient metasurface much easier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.