Abstract

Platinum-based (especially cisplatin) chemotherapy is the main treatment after surgery for ovarian cancer. Although the initial treatment is effective, chemotherapy resistance develops rapidly. Therefore, chemotherapy resistance has always been a huge obstacle in the treatment of ovarian cancer. Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multifunctional protein that plays a role in promoting tumorigenesis under various stress states. In this study, using MTT and SKOV3 ovarian cancer cells deficient in SND1 were observed to be more apoptotic and to express more apoptotic protein after treatment with cisplatin through the MTT, clone formation, and flow cytometry assays, while cells overexpressing SND1 exhibited a decreased number of apoptotic cells and expression of apoptoticproteins. Moreover, SND1 can regulate the expression of Growth arrest-specific 6 (GAS6) and then activate the AKT signaling pathway to achieve the regulation of sensitivity to cisplatin-induced apoptosis in ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call