Abstract

Recently, evidence has suggested a regulatory role for SND1 in osteoarthritis progression. Interestingly, we found that SND1 protein expression was increased, mitochondria were shrunken and decreased in number, mitochondrial membrane potential was decreased, mitochondrial ROS production was increased, and ATP levels were decreased in IL-1β treated mouse chondrocytes, and SND1 silencing removed these changes. Furthermore, IL-1β treatment promoted inflammatory factor secretion in chondrocytes, promoted cell apoptosis, increased MMP13 protein and inhibited collagen II protein expression, and si-SND1 inhibited the IL-1β effects. We validated the association between SND1 and PINK1 and found that PINK1 reversed the inhibitory effects of SND1 silencing on IL-1β-induced mitochondrial damage, inflammatory reaction, apoptosis and extracellular matrix degradation in mouse chondrocytes. Furthermore, we found that PINK1 upregulated BECN1 protein expression and that BECN reversed the inhibitory effects of PINK1 silencing on IL-1β-induced mitochondrial damage, inflammatory reaction, apoptosis and extracellular matrix degradation. Further mechanistic studies revealed that PINK1 inhibited the AMPK/mTOR signaling axis to aggravate IL-1β induced mouse chondrocytes injury by upregulating BECN1 protein expression. In vivo results showed that the damage to cartilage tissue was significantly alleviated in rats with osteoarthritis by knocking down SND1 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.