Abstract
AbstractOne‐dimensional semiconductors are interesting materials due to their unique structural features and anisotropy, which grant them intriguing optical, dielectric and mechanical properties. In this work, we report on SnBrP, a lighter homologue of the first inorganic double helix compound SnIP. This class of compounds is characterized by intriguing mechanical and electronic properties, featuring a high flexibility without modulation of physical properties. Semiconducting SnBrP can be synthesized from red phosphorus, tin and tin(II)bromide at elevated temperatures and crystallizes as red‐orange, cleavable needles. Raman measurements pointed towards a double helical building unit in SnBrP, showing similarities to the SnIP structure. After taking PL measurements, HR‐TEM, and quantum chemical calculations into account, we were able to propose a sense full structure model for SnBrP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift für anorganische und allgemeine Chemie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.