Abstract

SNAr reactions with 6-(fluoro, chloro, bromo, iodo, and alkylsulfonyl)purine nucleosides and nitrogen, oxygen, and sulfur nucleophiles were studied. Pseudo-first-order kinetics were measured with 6-halopurine compounds, and comparative reactivities were determined versus a 6-(alkylsulfonyl)purine nucleoside. The displacement reactivity order was: F > Br > Cl > I (with BuNH2/MeCN), F > Cl approximately Br > I (with MeOH/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/MeCN), and F > Br > I > Cl [with K+ -SCOCH3/dimethyl sulfoxide (DMSO)]. The order of reactivity with a weakly basic arylamine (aniline) was: I > Br > Cl > F (with 5 equiv of aniline in MeCN at 70 degrees C). However, those reactions with aniline were autocatalytic and had significant induction periods ( approximately 50 min for the iodo compound and approximately 6 h for the fluoro analogue). Addition of trifluoroacetic acid (TFA) eliminated the induction period, and the order then was F > I > Br > Cl (with 5 equiv of aniline and 2 equiv of TFA in MeCN at 50 degrees C). The 6-(alkylsulfonyl)purine nucleoside analogue was more reactive than the 6-fluoropurine compound with both MeOH/DBU/MeCN and iPentSH/DBU/MeCN and was more reactive than the Cl, Br, and I compounds with BuNH2 and aniline/TFA. Titration of the 6-halopurine nucleosides in CDCl3 with TFA showed progressive downfield 1H NMR chemical shifts for H8 (larger) and H2 (smaller). The major site of protonation as N7 for both the 6-fluoro and 6-bromo analogues was confirmed by large upfield shifts ( approximately 16 ppm) of the 15N NMR signal for N7 upon addition of TFA (1.6 equiv). Mechanistic considerations and resolution of prior conflicting results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.