Abstract
Terminal ligand exchange and framework linker exchange have been frequently practiced as powerful tools to functionalize reticular structures such as metal-organic frameworks (MOFs). Herein, we report the postsynthetic modification (PSM) of a 6-connected layered MOF (hxl topology) to achieve a 12-connected fcu framework. In the PSM process, isometric linker exchange in the layers and linker installation between adjacent layers by the substitution of modulating ligands happen simultaneously. Snapshots of PSM at different time points reveal that the hxl domain is adaptively reorganized to create sites for new linker installation, and gradually the fcu domain dominates the crystal. Detailed kinetic analysis suggests that, although adaptive linker installation requires interlayer expansion of stackings in situ, it is kinetically faster than isometric linker exchange in the layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.