Abstract

ABSTRACTThe spatial evolution of a turbulent flow in the pilot stage of a jet pipe servo valve at the inlet pressure and deflection angle of the jet pipe is investigated using a large eddy simulation (LES). The pressure of the same flow field is measured by a high frequency dynamic pressure sensor in the experiments and is compared with the results of the LES, as well as their root-mean-square (RMS) and fast Fourier transform (FFT) results. The results of experiments and LES are in good agreement, indicating that LES is able to predict the flow dynamics. Velocity datasets based on LES are utilised to conduct the snapshot proper orthogonal decomposition (snapshot POD) technique. The snapshot POD analysis results of the first 4 modes show a full ability to directly visualise details of the coherent structures. The influences of the inlet pressure and deflection angle of the jet pipe are also discussed. Under different inlet pressures, the velocity eigenfunctions of the first mode are similar, while the locations and strengths of the vortices in high modes are different. The Lamb-Oseen vortices that affect the trajectory of jet streams are observed in the vicinity of the entrances of receiver channels only in the first mode, and several spindly vortices appear in the region of −5 < y/n < −2 in the higher modes and act in opposite directions between adjacent vortices. The flow becomes more turbulent with increasing inlet pressure, and the turbulent structures of the high modes become ineffective from a deflection angle of 0.4° onward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call