Abstract

Magnetic resonance (MR)-based oxygen extraction fraction (OEF) measurement techniques that use blood oxygen level-dependent (BOLD)-based approaches require the measurement of the R2' decay rate and deoxygenated blood volume to derive the local oxygen saturation in vivo. We describe here a novel approach to measure OEF using rapid local frequency mapping. By modeling the MR decay process in the static dephasing regime as two separate dissipative and oscillatory effects, we calculate the OEF from local frequencies measured across the brain by assuming that the biophysical mechanisms causing OEF-related frequency changes can be determined from the oscillatory effects. The Parameter Assessment by Retrieval from Signal Encoding (PARSE) technique was used to acquire the local frequency change maps. The PARSE images were taken on 11 normal volunteers, and 1 patient exhibiting hemodynamic stress. The mean MR-OEF in 11 normal subjects was 36.66±7.82%, in agreement with positron emission tomography (PET) literature. In regions of hemodynamic stress induced by vascular steal, OEF exhibits the predicted focal increases. These preliminary results show that it is possible to measure OEF using a rapid frequency mapping technique. Such a technique has numerous advantages including speed of acquisition, is noninvasive, and has sufficient spatial and temporal resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call