Abstract
Intracellular lasers are emerging as powerful biosensors for multiplexed tracking and precision sensing of cells and their microenvironment. This sensing capacity is enabled by quantifying their narrow-linewidth emission spectra, which is presently challenging to do at high speeds. In this work, we demonstrate rapid snapshot hyperspectral imaging of intracellular lasers. Using integral field mapping with a microlens array and a diffraction grating, we obtain images of the spatial and spectral intensity distribution from a single camera acquisition. We demonstrate widefield hyperspectral imaging over a 3 × 3 mm2 field of view and volumetric imaging over 250 × 250 × 800 µm3 (XYZ) volumes with a lateral (XY) resolution of 5 µm, axial (Z) resolution of 10 µm, and a spectral resolution of less than 0.8 nm. We evaluate the performance and outline the challenges and strengths of snapshot methods in the context of characterizing the emission from intracellular lasers. This method offers new opportunities for a diverse range of applications, including high-throughput and long-term biosensing with intracellular lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.