Abstract
Compressive multispectral imaging systems comprise a new generation of spectral imagers that capture coded projections of a scene where spectral data cubes are reconstructed computationally. Separately, time-of-flight (ToF) cameras obtain 2D range images where each pixel records the distance from the camera sensor to the target surface. The demand for these imaging modalities is rapidly increasing, and thus, there is strong interest in developing new image sensors that can simultaneously acquire multispectral-color-and-depth imagery (MS+D) using a single aperture. Work in this path has been mainly developed via RGB+D imaging. However, in RGB+D, the multispectral image is limited to three spectral channels, and the imaging system often relies on two image sensors. We recently proposed a compressive MS+D imaging device that used a digital-micromirror-device, requiring a bulky double imaging-and-relay path. To overcome the bulkiness and other difficulties of our previous imaging system, this work presents a more-compact MS+D imaging device with snapshot capabilities. It provides better spectral sensing, relying on a static color-coded-aperture (CCA) and a ToF sensor. To guarantee good quality in the recovery, we develop an optimization method for CCA based-on blue-noise-multitoning, solved via the direct-binary-search algorithm. A testbed-setup is reported along with simulated and real experiments that demonstrate the MS+D capabilities of the proposed system over static and dynamic scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.