Abstract

Snapping mechanisms are investigated for an elastic strip with ends imposed to move and rotate in time. Attacking the problem analytically via Euler’s elastica and the second variation of the total potential energy, the number of stable equilibrium configurations is disclosed by varying the kinematics of the strip ends. This result leads to the definition of a ‘universal snap surface’, collecting the sets of critical boundary conditions for which the system snaps. The elastic energy release at snapping is also investigated, providing useful insights for the optimization of impulsive motion. The theoretical predictions are finally validated through comparisons with experimental results and finite element simulations, both fully confirming the reliability of the introduced universal surface. The presented analysis may find applications in a wide range of technological fields, as for instance energy harvesting and jumping robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.