Abstract

Single-cell high-throughput chromatin conformation capture technologies (scHi-C) has been used to map chromatin spatial organization in complex tissues. However, computational tools to detect differential chromatin contacts (DCCs) from scHi-C datasets in development and through disease pathogenesis are still lacking. Here, we present SnapHiC-D, a computational pipeline to identify DCCs between two scHi-C datasets. Compared to methods designed for bulk Hi-C data, SnapHiC-D detects DCCs with high sensitivity and accuracy. We used SnapHiC-D to identify cell-type-specific chromatin contacts at 10 Kb resolution in mouse hippocampal and human prefrontal cortical tissues, demonstrating that DCCs detected in the hippocampal and cortical cell types are generally associated with cell-type-specific gene expression patterns and epigenomic features. SnapHiC-D is freely available at https://github.com/HuMingLab/SnapHiC-D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.