Abstract

Multiplexed DNA fluorescence in situ hybridization (FISH) imaging technologies have been developed to map the folding of chromatin fibers at tens of nanometers and up to several kilobases in resolution in single cells. However, computational methods to reliably identify chromatin loops from such imaging datasets are still lacking. Here we present a Single-Nucleus Analysis Pipeline for multiplexed DNA FISH (SnapFISH), to process the multiplexed DNA FISH data and identify chromatin loops. SnapFISH can identify known chromatin loops from mouse embryonic stem cells with high sensitivity and accuracy. In addition, SnapFISH obtains comparable results of chromatin loops across datasets generated from diverse imaging technologies. SnapFISH is freely available at https://github.com/HuMingLab/SnapFISH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call