Abstract
A novel self-organising map (SOM) algorithm based on the snap-drift neural network (SDSOM) is proposed. The modal learning algorithm deploys a combination of the snap-drift modes; fuzzy AND (or Min) learning (snap), and Learning Vector Quantisation (drift). The performance of the algorithm is tested on several well known data sets and compared with the traditional Kohonen SOM algorithm. It is found that the snap mode makes the learning in SDSOM faster than the Kohonen SOM, and that it leads to the formation of more compact maps. When using the maps for classification, SDSOM gives better performance, based on labelled winning nodes, than Kohonen SOM on a variety of data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.