Abstract

Deinagkistrodon acutus, also known as the hundred-pace viper or Chinese moccasin, is a clinically significant venomous snake in Taiwan. To address the lack of knowledge on the venom proteome of D. acutus, the venom composition was studied by a bottom-up proteomic approach combining reverse phase high-performance liquid chromatography, SDS-PAGE, and LC–MS/MS analysis. The immunoreactivity and cross-reactivity of Taiwanese freeze-dried D. acutus antivenom (DA-AV) and hemorrhagic antivenom (FH-AV) were investigated, as well. The proteomic analysis revealed the presence of 29 distinct proteins from D. acutus venom belonging to 8 snake venom protein families. Snake venom metalloproteinase (SVMP, 46.86%), C-type lectin (CLEC, 37.59%), phospholipase A2 (PLA2, 7.33%) and snake venom serine protease (SVSP, 6.62%) were the most abundant proteins. In addition to DA-AV, FH-AV also showed a profile of broad immunorecognition toward the venom of D. acutus. Remarkably, both antivenoms specifically reacted with the HPLC fractions containing SVMPs, and the titer was 5–10 times higher than fractions of other components. This information helps us to deeply understand the pathophysiology of D. acutus envenomation and guide us to development of more effective antivenom for clinical treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call