Abstract

Snake venoms are a natural biological source of bioactive compounds, mainly composed of proteins and peptides with specific pathophysiological functions. The diversity of protein families found in snake venoms is reflected by the range of targets and toxicological effects observed, and consequently, a wide variety of potential pharmacological activities. In this context, in vitro biomimetic models such as spheroid and organoid systems, which are three-dimensional (3D) cell culture models, enable extensive screening and identification of substances with pharmacological potential and the determination of the mechanisms underlying their activities. In this review we summarize the main findings of 3D microenvironment cell culture as a promising model for snake venom research, from producing snake toxins on venom gland organoids to screening pharmacological active compounds on spheroids for drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call