Abstract
The accuracy of data collected by optical instruments can be greatly impacted by radar band electromagnetic waves (EM) and scattered visible light. Traditional electromagnetic-wave-absorbing (EMA) materials face challenges in effectively attenuating electromagnetic waves within the visible light spectrum. To address this issue, a structural engineering-based assembly strategy was developed to construct PVDF/Ti3CNTx@PPyNF composites with multiple heterogeneous interfaces, inspired by snake scales. And through the self-doping of N elements and the coating process, the material finally exhibits excellent microwave and visible light absorption properties. This approach generates multiple polarization losses of electromagnetic waves, enabling the material to exhibit excellent electromagnetic wave absorption performance. Specifically, the PVDF/Ti3CNTx@PPyNF composite, containing 5 wt % Ti3CNTx@PPyNFs, demonstrates exceptional microwave absorption performance, with a minimum reflection loss of -65.5 dB and an effective absorption bandwidth of up to 6.95 GHz. Additionally, the composite coating exhibits 97.4% visible light absorption performance, providing a promising solution to the challenges of protecting against complex electromagnetic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.