Abstract

BackgroundSnail-borne parasitic diseases, such as angiostrongyliasis, clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis, pose risks to human health and cause major socioeconomic problems in many tropical and sub-tropical countries. In this review we summarize the core roles of snails in the life cycles of the parasites they host, their clinical manifestations and disease distributions, as well as snail control methods.Main bodySnails have four roles in the life cycles of the parasites they host: as an intermediate host infected by the first-stage larvae, as the only intermediate host infected by miracidia, as the first intermediate host that ingests the parasite eggs are ingested, and as the first intermediate host penetrated by miracidia with or without the second intermediate host being an aquatic animal. Snail-borne parasitic diseases target many organs, such as the lungs, liver, biliary tract, intestines, brain and kidneys, leading to overactive immune responses, cancers, organ failure, infertility and even death. Developing countries in Africa, Asia and Latin America have the highest incidences of these diseases, while some endemic parasites have developed into worldwide epidemics through the global spread of snails. Physical, chemical and biological methods have been introduced to control the host snail populations to prevent disease.ConclusionsIn this review, we summarize the roles of snails in the life cycles of the parasites they host, the worldwide distribution of parasite-transmitting snails, the epidemiology and pathogenesis of snail-transmitted parasitic diseases, and the existing snail control measures, which will contribute to further understanding the snail-parasite relationship and new strategies for controlling snail-borne parasitic diseases.

Highlights

  • Snail-borne parasitic diseases, such as angiostrongyliasis, clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis, pose risks to human health and cause major socioeconomic problems in many tropical and sub-tropical countries

  • In this review, we summarize the roles of snails in the life cycles of the parasites they host, the worldwide distribution of parasite-transmitting snails, the epidemiology and pathogenesis of snail-transmitted parasitic diseases, and the existing snail control measures, which will contribute to further understanding the snail-parasite relationship and new strategies for controlling snail-borne parasitic diseases

  • Millions of people in approximately 90 countries have suffered from Snail-borne parasitic diseases (SBPDs), in which snails serve as the transmitting vectors and intermediate hosts (Table 1)

Read more

Summary

Conclusions

SBPDs, including most trematodiasis diseases (clonorchiasis, fascioliasis, fasciolopsiasis, opisthorchiasis, paragonimiasis and schistosomiasis) and some nematodiasis diseases (e.g., angiostrongyliasis) with an expanding geographical distribution, remain highly prevalent worldwide and have substantial deleterious impacts on human health, predominantly in tropical and sub-tropical areas. Comprehensive molecular epidemiology studies, an understanding of the ecology of medically important snails and further insights into snail-parasite interactions, those based on large-scale data mining of genomic snail datasets, are necessary to identify specific or key molecules involved in snail survival, metabolism and development. These molecules could be potential targets for natural molluscicides, which could be developed as novel and effective treatment and control strategies against SBPDs. Additional file 1: Multilingual abstracts in the five official working languages of the United Nations.

Background
79. World Health Organization
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call