Abstract

Cell extrusion is a morphogenetic process that is implicated in epithelial homeostasis and elicited by stimuli ranging from apoptosis to oncogenic transformation. To explore whether the morphogenetic transcription factor Snail (SNAI1) induces extrusion, we inducibly expressed a stabilized Snail6SA transgene in confluent MCF-7 monolayers. When expressed in small clusters (less than three cells) within otherwise wild-type confluent monolayers, Snail6SA expression induced apical cell extrusion. In contrast, larger clusters or homogenous cultures of Snail6SA cells did not show enhanced apical extrusion, but eventually displayed sporadic basal delamination. Transcriptomic profiling revealed that Snail6SA did not substantively alter the balance of epithelial and mesenchymal genes. However, we identified a transcriptional network that led to upregulated RhoA signalling and cortical contractility in cells expressing Snail6SA Enhanced contractility was necessary, but not sufficient, to drive extrusion, suggesting that Snail collaborates with other factors. Indeed, we found that the transcriptional downregulation of cell-matrix adhesion cooperates with contractility to mediate basal delamination. This provides a pathway for Snail to influence epithelial morphogenesis independently of classic epithelial-to-mesenchymal transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.