Abstract

BackgroundIt has been confirmed that NF-κB p65 signaling pathway is involved in the regulation of alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome (ARDS). Whether SN50, a NF-κB cell permeable inhibitor, could attenuate alveolar hypercoagulation and fibrinolysis inhibition in ARDS remains to be elucidated.PurposeWe explored the efficacy and potential mechanism of SN50 on alveolar hypercoagulation and fibrinolysis inhibition in ARDS in mice.Materials and methodsMouse ARDS was made by 50 μl of lipopolysaccharide (LPS) (4 mg/ml) inhalation. Male BALB/c mice were intraperitoneally injected with different does of SN50 1 h before LPS inhalation. Lung tissues were collected for hematoxylin-eosin (HE) staining, wet/dry ratio. Pulmonary expressions of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), collagen III, as well as phosphorylated p65 (p-p65), p65 in nucleus (p’-p65), IκBα and IKKα/β were measured. Bronchoalveolar lavage fluid (BALF) was gathered to test the concentrations of TF, PAI-1, activated protein C (APC) and thrombinantithrombin complex (TAT). DNA binding activity of NF-κB p65 was also determined.ResultsAfter LPS stimulation, pulmonary edema and exudation and alveolar collapse occured. LPS also stimulated higher expressions of TF and PAI-1 in lung tissues, and higher secretions of TF, PAI-1, TAT and low level of APC in BALF. Pulmonary collagen III expression was obviously enhanced after LPS inhalation. At same time, NF-κB signaling pathway was activated with LPS injury, shown by higher expressions of p-p65, p’-p65, p-IKKα/β, p-Iκα in pulmonary tissue and higher level p65 DNA binding activity. SN50 dose-dependently inhibited TF, PAI-1 and collagen IIIexpressions, and decreased TF, PAI-1, TAT but increased APC in BALF. SN50 treatment attenuated pulmonary edema, exudation and reduced lung tissue damage as well. SN50 application significantly reduced p’-p65 expression and weakened p65 DNA binding activity, but expressions of p-p65, p-IKKα/β, p-Iκα in cytoplasm of pulmonary tissue were not affected.ConclusionsSN 50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in ARDS via inhibition of NF-κB p65 translocation. Our data demonstrates that NF-κB p65 pathway is a viable new therapeutic target for ARDS treatment.

Highlights

  • It has been confirmed that NF-κB p65 signaling pathway is involved in the regulation of alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome (ARDS)

  • We found that silencing NF-κB p65 gene or regulating IKKβ modulated the LPS-stimulated expressions of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) and activated protein C (APC) in alveolar epithelial cell type II (AECII) [9, 10]

  • SN50 inhibited expressions of TF and PAI-1 in mRNA and in protein levels in ARDS mice To determine whether SN50 modulates TF and PAI-1 expressions in lung tissue of LPS-induced ARDS, we detected these mRNA and protein expressions by quantitative real-time PCR and western blotting respectively

Read more

Summary

Introduction

It has been confirmed that NF-κB p65 signaling pathway is involved in the regulation of alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome (ARDS). Acute respiratory distress syndrome (ARDS), induced by many pathogenic factors, such as pneumonia, sepsis, shock etc., is one of the most common causes being treated in ICU. It is characterized by respiratory distress and progressively refractory hypoxemia [1,2,3,4]. Our previous studies confirmed that NF-κB signaling pathway participated in the regulation of hypercoagulation and fibrinolysis inhibition in LPS-induced alveolar epithelial cell type II (ACEII) [9.10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call