Abstract

The substitution reaction of the diethyl allylic and propargylic phosphates with Ar2CH anions was applied to sec‐alkyl phosphates to compare reactivity and stereoselectivity. However, the substitution took place on the ethyl carbon of the diethyl phosphate group. We then found that the diphenyl phosphate leaving group ((PhO)2PO2) was suited for the substitution at the sec‐alkyl carbon. Enantioenriched diphenyl sec‐alkyl phosphates with different substituents (Me, Et, iPr) on the vicinal position underwent the substitution reaction with almost complete inversion (>99% enantiospecificity). The substitution reactions of cyclohexyl phosphates possessing cis or trans substituents (Me and/or tBu) at the C4, C3, and C2 positions of the cyclohexane ring were also studied to observe the difference in reactivity among the cis and trans isomers. A transition‐state model with the phosphate leaving group ((PhO)2PO2) in the axial position was proposed to explain the difference. This model was supported by computational calculation of the virtual substitution reaction of the structurally simpler “dimethyl” cyclohexyl phosphates (leaving group = (MeO)2PO2) with MeLi. Furthermore, the calculation unexpectedly indicated higher propensity of (PhO)2PO2 as a leaving reactivity than alkyl phosphate groups such as (MeO)2PO2 and (iPrO)2PO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call