Abstract
Superconductor-semiconductor nanowire hybrid structures are useful in fabricating devices for quantum information processing. While selective area growth (SAG) offers the flexibility to grow semiconductor nanowires in arbitrary geometries, in situ evaporation of superconductors ensures pristine superconductor-semiconductor interfaces, resulting in strong induced superconductivity in the semiconducting nanowire. In this work, we used high-aspect-ratio SiOx dielectric walls to in situ evaporate islands of superconductor tin on in-plane InAs SAG nanowires. Our technique enables customization in the designs of such hybrid nanostructures, while simultaneously performing the nanowire and superconductor growth without breaking vacuum. Using this technique, we grew super(S)-normal(N)-super(S), NS, and SNSNS junctions. We performed cryogenic electron transport measurements revealing the presence of gate and field tunable supercurrents. We further measured the superconducting gap and critical fields in the hybrid nanostructures and the crossover from 2e to 1e periodicity in the SNSNS junctions as a proof of the usability of these hybrid nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.