Abstract

AbstractCarbon black is commonly used as a conductive additive for lithium‐ion battery (LIB) electrodes owing to its high electrical conductivity and cost‐effectiveness. However, the role of traditional conductive additives has been limited to imparting conductivity to the electrode. In this study, we investigate the effect of incorporating Sn nanoparticles, which form an alloy with lithium, into a conductive carbon matrix (Sn@C) for enhancing the lithium storage capacity. This approach combines an active material with a conductive additive and successfully demonstrates the utilization of Sn@C as an “active” conductive additive for LIBs. Sn@C is synthesized via plasma engineering, wherein Sn nanoparticles are uniformly dispersed within a carbon matrix. When Sn@C‐500, Sn@C annealed at 500 °C, is used as an “active” conductive additive in LIB half‐cell with a graphite anode, ~10 % higher reversible capacity than that of a commercial conductive additive (Super P) is achieved. Further, electrochemical impedance spectroscopy studies reveal that Sn@C‐500 exhibits a lower internal resistance than Super P, confirming its effectivity in providing internal conductivity to the electrode. Our results open up the possibilities for improving the performance of graphite anodes in LIBs using Sn‐doped carbon as an active material and conductive additive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.