Abstract
Energy provision and storage are significant and critical issues for wireless sensor network (WSN) applications. Hybrid energy devices incorporating energy harvesting and storage requires the development of enhanced energy storage materials and architectures. A decreased footprint with the same energy capability is desirable to maximise the energy density and enable long-life wireless sensors. Methods to structure active and support battery materials enhance the device characteristics offering mechanical and electrical support. The results below are for materials that can be processed in 3D or 1D to decrease the footprint of the energy storage element. The effect of the support material is also shown to be significant and directly relevant for high aspect ratio nanostructure where the lithium active materials experience volume changes during charge and discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.