Abstract
We present photometric and spectroscopic observations of the interacting transient SN 2009ip taken during the 2013 and 2014 observing seasons. We characterise the photometric evolution as a steady and smooth decline in all bands, with a decline rate that is slower than expected for a solely $^{56}$Co-powered supernova at late phases. No further outbursts or eruptions were seen over a two year period from 2012 December until 2014 December. SN 2009ip remains brighter than its historic minimum from pre-discovery images. Spectroscopically, SN 2009ip continues to be dominated by strong, narrow ($\lesssim$2000 km~s$^{-1}$) emission lines of H, He, Ca, and Fe. While we make tenuous detections of [Fe~{\sc ii}] $\lambda$7155 and [O~{\sc i}] $\lambda\lambda$6300,6364 lines at the end of 2013 June and the start of 2013 October respectively, we see no strong broad nebular emission lines that could point to a core-collapse origin. In general, the lines appear relatively symmetric, with the exception of our final spectrum in 2014 May, when we observe the appearance of a redshifted shoulder of emission at +550 km~s$^{-1}$. The lines are not blue-shifted, and we see no significant near- or mid-infrared excess. From the spectroscopic and photometric evolution of SN 2009ip until 820 days after the start of the 2012a event, we still see no conclusive evidence for core-collapse, although whether any such signs could be masked by ongoing interaction is unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.