Abstract

sn-1 ,2-Diacylglycerol cholinephosphotransferase from pig liver microsomes was partially purified through a procedure involving solubilization with sodium cholate and chromatography on Sepharose 6B. The resulting preparation was 19-fold enriched with respect to microsomes and was shown to be very sensitive to different detergents. Sodium cholate gave the best yields in activity. In a mixed micellar assay with Triton X-100 a strong dependence of the enzyme activity on the concentration of mixed micelles was observed, due to Triton X-100 acting as an inactivator. Soja phosphatidylcholine added exogenously protected the enzyme against detergent inactivation and stimulated the enzyme activity. Dioleoylphosphatidylcholine had a similar stimulatory effect, whereas didecanoyl- or dioctanoyl-phosphatidylcholine did not; thus long-chain phosphatidyicholines seem to be essential in the activation of cholinephosphotransferase. In a mixed micellar assay with sodium cholate no inactivation of the enzyme could be detected and it was found that soja phosphatidyicholine stimulates the activity in a greater extent than in Triton X-100 mixed micelles. The phospholipid activates the enzyme in a noncompetitive way with an activation constant of 176 mol%. K m was estimated as 1.54 mol% with a V max = 30 nmol/min/mg protein. Those results support an activation mechanism by phosphatidylcholine interacting at sites different from the active center. The high activation constant led to the conclusion that cholinephosphotransferase requires a lipidic boundary for full activation. No activation by substrate was observed. Short-chain diacylglycerides such as dihexanoyl-, dioctanoyl-, or didecanoylglycerol can be used as substrates although the enzyme in this case has only 5 to 10% of the activity it has for dioleoylglycerol or egg diglycerides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.